Modeling and prediction of time-series of monthly copper prices
Authors
Abstract:
One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these methods is investigated in predicting the time-series of monthly prices of copper during early 1987 till late 2014. This study shows that the mean of about thousand runs using the Stochastic Differential Equations (SDE) method for 33 out of range cases gives better forecasting results for copper price time-series in comparison to traditional linear or non-linear functional forms (such as ARIMA and TGARCH) to model the price movement.
similar resources
The Time-series Relation between Monthly Sales and Stock Prices
Focuses on several key industries like Textile, Plastics, and Electronics, this study applies the Vector Autoregressive Moving Average (VARMA) Model on the industrial sales index and industrial stock prices index to observe the dynamic relationship between sales and stock prices. Our empirical result has shown a consistent pattern of relationship between sales and stock prices among all industr...
full textStochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity
Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...
full textData-driven models for monthly streamflow time series prediction
C. L. Wu and K. W. Chau* 2 Dept. of Civil and Structural Engineering, Hong Kong Polytechnic University, 3 Hung Hom, Kowloon, Hong Kong, People’s Republic of China 4 5 *Email: [email protected] 6 ABSTRACT 7 Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN), and 8 Artificial Neural Networks (ANN), are widely applied to hydrologic time series predi...
full textTime Series Models to Predict the Monthly and Annual Consumption of Natural Gas in Iran
Considering the fact that natural gas is a widely used energy source, the prediction of its consumption can be useful (Derek LAM, 2013). As Iran has one of the largest gas reserves in the world, its consumption in the country can affect the worldwide price of gas, Therefore, the current research is useful both from economic and environmental point of view. ...
full textModeling Trigonometric Seasonal Components for Monthly Economic Time Series
The basic structural time series model has been designed for the modelling and forecasting of seasonal economic time series. In this paper we explore a generalisation of the basic structural time series model in which the time-varying trigonometric terms associated with different seasonal frequencies have different variances for their disturbances. The contribution of the paper is two-fold. The...
full textthe effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
My Resources
Journal title
volume 53 issue 1
pages 91- 97
publication date 2019-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023